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The optimal chorce of grid pomts for the multt-dimensronal pseudospectral Fourier method 
IS Investigated. Optrmal sampling is obtained by looking for the most isotropic sampling grid 
m momentum space. The points of this grid are found to be positioned at the center of densely 
packed hard spheres forming an oblique grid. It IS found that by using this obhque grid the 
samplmg efliciency can be enhanced. compared to a rectangular grid, by a factor ranging from 
1.4 for three dimensions to 16 for eight dimenstons. The method ts checked in tive dimensions 
by calculating the Laplactan in an obhque and in a Cartestan grid. The oblique grid was 
found to have superior accuracy usmg a factor of 2.5 less grid points. The method is also 
illustrated m six dtmenstons by a calculatton of the ground and first excited states of two 
Interacting triplet hydrogen atoms ( 1988 Academic Press. Inc 

I. Introduction 

Partial differential equations are of great importance in physics. Almost all the 
fundamental laws are formulated in terms of partial differential equations. Among 
the equations which are frequently encountered are the equation of Maxwell, of 
electromagnetics, the Helmholtz classical wave equation, the diffusion equation, the 
Schrodinger equation of quantum mechanics and more. Therefore it is not 
surprising that large efforts have been devoted to the development of numerical 
methods for solving partial differential equations. This paper is motivated 
particularly toward the solution of the time dependent Schrodinger equation 

where the Hamiltonian operator fi is given by 

A=&+ii(r,, rz,r3, . . . . rrr), 

where Vi is the n-dimensional Laplacian operator, V is the potential operator, and 
n is the dimensionality of the system. 
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In recent years pseudospectral methods have gained considerable popularity in 
the numerical solution of partial differential equations [l]. Pseudospectral or 
collocation methods approximate the solution u of a partial differential equation by 
a truncated series 

N-1 

uN(x)= 1 uk4k(X) 
k=O 

(1.2) 

in known functions I$~. The expansion coefficients are chosen so that the 
approximate solution u,~ coincides with the solution u at a discrete set 
x0, x,, . . . . xN ~, of sampling points 

UN(X,) = 4x,), j=O, . . . . N- 1. (1.3) 

The solution at other points is obtained by interpolation. The optimal choice of 
these sampling points is the subject of this work. 

The most frequently used pseudospectral method is the Fourier pseudospectral 
method, or the Fourier method, defined in 1D by equidistant sampling points 

.x, = j/N, j=O, . . . . N- 1 (I.41 

and trigonometric expansion functions 

(flk(X) = eZR’-rk, k = 0, . . . . N- 1. (1.5) 

In more than one dimension the problem of choosing sampling points becomes 
more complicated. What is required is an isotropic sampling in momentum space 
such that the wave motion is represented equally well in all directions. Unfor- 
tunately, such isotropic sampling of momentum is impossible in multi-dimensions. 
The simplest choice of sampling points is on an equidistant rectangular grid. This 
rectangular grid combined with the multi-dimensional Fourier method is far from 
optimal; it favours diagonal directions, and as a result samples the directions along 
the grid axes relatively poorly. Better configurations of sampling points exist; they 
can be obtained by appropriately skewing the grid. This skewing procedure is the 
basis for the skewed Fourier method, the Fourier method for wave propagation on 
an oblique grid. Using this oblique grid the sampling efticiency is greatly enhanced 
compared with the simple rectangular grid. It is found that this enhancement 
increases with the dimensionality from a factor of 1.4 in 3D to 16 in 8D. 

The problem of finding the best skewed grid is related to the dense sphere- 
packing problem [2-51. This was first observed by Petersen and Middleton [6], 
who showed that multi-dimensional interpolation of a class of isotropically band- 
limited functions is most efficient on an appropriately skewed grid. 

For wave packet propagations the maximum represented momentum is limited, 
and there is no a priori knowledge of the direction of the momentum of the wave 
packet at some stage of the propagation. This means that the momentum vectors 
are evenly distributed in a sphere of radius pmal. The corresponding frequency 
vectors k = p/2x lie in a sphere of radius R = pmax /2 rr, which is called the band-limit 
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radius of the wave propagation. The band-limit radius is the multi-dimensional 
analog of the Nyquist frequency. 

Sampling a function f(x) on a lattice, i.e., representing it only at discrete lattice 
points, replaces its Fourier transform f(k) by an infinite sum of shifted copies of 
f(k) [7, pp. 189-1941. Each spectrum replica is centered at a point of a lattice that 
is defined by the reciprocal lattice vectors of the sampling lattice vectors in the 
x-domain. For wave propagations with band-limit radius R, the spectrum replicas 
are contained in spheres of radius R with centers at the reciprocal lattice points. As 
a result the most efficient sampling scheme in the x-domain amounts to densely 
packing these spheres in a lattice in the k-domain, without overlapping of 
spheres [6]. 

The theory of sphere packing [2-51 thus has relevance for the problem of 
efficient sampling. The densest possible lutrice packing of spheres is known [2] for 
dimension at least up to n = 8. These lattice packings have been translated into 
efficient sampling grids by Petersen and Middleton [6]. 

The skewed Fourier method exploits the above idea of efficient sampling by an 
oblique grid for propagation of a wave function in time, as opposed to the work of 
Petersen and Middleton who proposed grid skewing to improve interpolation 
efficiency. 

Use of the skewed Fourier method will cause large savings in computational 
resources for problems of dimensionality n 2 3. The applications of the Fourier 
method can be divided into two groups: simulations in real space where the 
maximum dimensionality is three and simulations in configuration space where the 
dimensionality is unlimited. An example of the latter is the modeling of processes in 
molecular dynamics by solving the time dependent Schrijdinger equation [8-91: the 
dimensionality of the problem is n = 3L - 3, where L is the number of atoms par- 
ticipating in the reaction. The motivation for this work is to find means of directly 
simulating basic chemical reactions such as A + BC + AB+C or AB+CD + 
AC + BD. Currently most modeling calculations are carried out in two dimensions, 
the main limitation being the speed and storage capacity of existing computers. The 
availability of supercomputers has made 3D simulations feasible. The incorporation 
of parallel architecture into computers will make computations in more than three 
dimensions feasible in the near future. Projecting on the increase in computation 
capability it seems possible that full reactive scattering calculations in Cartesian 
coordinates will be performed in a few years, so that the skewed Fourier method 
will have much practical applicability. 

Section II presents the mathematics of oblique coordinate systems. Section III 
shows how to sample a function efficiently, on the basis of a dense sphere packing. 
Section IV summarizes the algorithm of the skewed Fourier method. Section V tests 
the critical part of the algorithm, the computation of the Laplacian, for a live- 
dimensional Gaussian wave function. Section VI illustrates the method, applying it 
to a six-dimensional calculation of the ground and first excited state of two 
interacting triplet hydrogen atoms in a box. Section VII is the discussion of the 
results. 
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II. TRANSFORMATION TO AN OBLIQUE COORDINATE SYSTEM 

The Laplacian 

Let (e,, . . . . e,) be the canonical basis of R”, and (v,, . . . . v,) a new, not necessarily 
orthogonal basis. The basis (v,, . . . . v,) will be called the oblique basis of the x- 
domain. Let V be the transition matrix from the old to the new basis, i.e., V is the 
n x n matrix whose columns are the vectors v,, 

011 v,2 .‘. v I ,I 

t’2I 1’22 . . . u2,, 
V=(v,)= . . . . . . 

i i 

=(v, . ..v.). 
. . . . . . 

L’“I V”2 . . . l’“,, 

(2.1) 

Vectors are written as columns in this paper. The symbol “T” denotes “transposed.” 
Define 

A = (0,) = V- ‘. (2.2) 

The coordinate representation I. = (A,, . . . . i,,)’ of a vector x = (x,, . . . . x,,)~ E R” in 
the oblique basis of the x-domain is given by 

x = i A,v,. (2.3) 
,=I 

The relation between x and )c is given by 

x=n, l.=Ax. (2.4) 

Let f(x) be a complex-valued function on R”. The function f can be expressed as 
a function f, of the new coordinates, by 

f,@)=fb), (2.5) 

where the function f, is defined as 

f,=f; v. (2.6) 

The relation between the derivatives off and f,, as obtained by the chain rule, is 

(2.7) 

A subsequent application of the chain rule gives the relation between the second 
derivatives: 

(2.8) 
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The Laplacian off can be expressed as a sum of second derivatives off,, by 

(2.9) 

where the coefficients blk are defined by 

b/k= f aJrakr. 
r=l 

(2.10) 

This is equivalent to 

B = (b,,) = AA=. (2.11) 

Since B is a symmetric matrix, and f is assumed to be many times differentiable, so 
that a’f,/al, 81, = a2f,/aJJ a& for all j, k, the number of terms in Eq. (2.9) can be 
reduced to about half by symmetrization. This is done by introducing the 
Coefficients cJk Of an Upper etria&Uhr matrix C = (cJk), with 

1 

2bJk if j<k 

‘Jk = b kk if j=k 

0 if j>k. 

As a result, the Laplacian can be written as 

(2.12) 

(2.13) 

where the same notation (V'f ), = (V2f) 0 V as in Eq. (2.6) has been used. 

The Fourier Transform 

The n-dimensional Fourier transform of a function f: R” + C is defined as [ 73 

f(k)=Jbnf(x)e-2n’k “dx. (2.14) 

The inverse Fourier transform is then given by 

j-(x)=jRnf(k)e+‘“‘*-dk. (2.15) 

Let (II,, . . . . u,) be a new basis of R”, uniquely related to the basis (v,, . . . . v”) by 

(u I,..., u,)= u=(v-‘)=. (2.16) 
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The basis (u, , . . . . II,) will be called the oblique basis of the k-domain. The coordinate 
representation p = (p,, . . . . P,)~ of a vector k = (k,, . . . . k,)’ E R” in the oblique basis 
of the k-domain is given by 

k= -f ,u,u,, 
/=I 

(2.17) 

The relation between k and p is given by 

k= Up, p = V=k. (2.18) 

The importance of this particular new basis of the k-domain lies in the fact that 
the Fourier transform is preserved, up to a constant, in the transformation to new 
bases of the x-domain and k-domain: 

LEMMA 1. Let d=ldet UI, PER”, and k=Up. Then f,(p)=d.f(k). 

Proof. By definition 

f,(p)=Jbnf,(k)ep2n” “d)L. (2.19) 

Substitute )L = Ax, with Jacobian J= Idet(dl/dx)l = ldet A( = ldet Ul = d, giving 

(2.20) 

The proof is completed if it can be shown that 

(Ax) . ( VTk) = x . k, all x, k E R”, 

which can also be expressed as 

1.p=(V1).(Up), all 1, or E R”. 

It is sufficient to prove that this is true for all basis vectors, 

(Ve,) . (Ue,) = e, -e,, all i, j, 

i.e.. 

(2.21) 

(2.22) 

(2.23) 

v,.u,=c!&, all i, j (2.24) 

(6, is the Kronecker symbol). However, this is equivalent to the matrix equation 

vu= I, (2.25) 

which is true per definition; see Eq. (2.16). Q.E.D. 
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The Fourier Transform of the Laplacian 

The derivative property of the Fourier transform is [7, Chap. 61 
A 

g (k) = 2rcik,f(k), all k E R”, 
’ J 

(2.26) 

for j= 1, . . . . n. The Fourier transform of the Laplacian off in the canonical coor- 
dinates is thus given by 

all k E R”. 

In oblique coordinates the Fourier transform of the original Laplacian is 

(using Eq. (2.13)) 
k=l ]=I 

(by application of Eq. (2.26) in the p-domain), so that 

6-hd = UC) AP), 

where the quadratic form L is defined by 

L(p)= -4Tc2 i f CJkpJpk. 
k=l /=I 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

In conclusion, the Laplacian of f can be obtained by the following series of 
function transformations: 

(1) f,=foV (express in oblique coordinates) 

(2) f2=A (Fourier transform) 

(3) f3=L.f2 (multiply by L) 

(4) h=L (Fourier transform backwards) 
(5) Vzf=f4d-' (express in canonical coordinates). 

III. EFFICIENT SAMPLING OF BAND-LIMITED FUNCTIONS BY DENSE SPHERE-PACKING 

Suppose the function f is represented by its values on an infinite discrete grid of 
points x = I;=, AJvJ, where the AJ are integers. These points form the lattice defined 
by the vectors v,, . . . . v,. Since f,(A)= f(x), this implies that the function f, is 
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represented on the integer grid Z”, which is rectangular and equidistant, so that the 
results of sampling theory [7] hold. 

In sampling theory it is convenient to analyze the process of sampling using the 
Shah function III(A) [7, Chap. 51, which is the impulse lattice 

III(i)= c &L-f), (3.1) 
IEZ” 

where 6 is the Dirac delta function. The sampled function can be defined as 

g,(k) =f,(l). III(~). (3.2) 

Taking Fourier transforms of both sides, and applying the convolution theorem 
gives 

21(P) = 3AP) * III(P) = c 3AP - 4, 
lEF 

(3.3) 

where use has been made of the fact that the Shah function is its own Fourier trans- 
form [7, Chap. lo]. Note that the function ii is periodic: bi(g + m) = b,(g), for all 
m E Z”. Eq. (3.3) shows that sampling of the function f, replaces its Fourier trans- 
form 3, by a superposition of shifted copies of 3,. 

Suppose the spectrum of the original function f is contained in an open sphere 
P= {kE R" ) llkll c R} of radius R, i.e., f(k) =0 if k$ P. Because of Lemma 1 this 
implies that j;(p) =0 if u$ VTP= Q. Thus the spectrum of f, is contained in a 
region Q, which is the skewed image of a sphere. Define 

Q,=f+Q= {~+cIcEQ,* 

P,= UQI, 
(3.4) 

for all 1~ Z”. 
In order to be able to recover the sampled function, the regions Q, should be 

mutually disjunct, Q, n Q,,, = 0 if If m, as follows. If the Q;s are disjunct, the sum 
of Eq. (3.3) reduces to at most one term: 

if PEQ, 
if u 4 Q,, all 1. (3.5) 

This implies that the values of 8, on the unit cell D = {p 10 < p, < 1, all i) contain 
all information needed to calculate 3,. (Proof Let BE R". If u 4 Q then 3,(B) = 0. If 
peQ= Q,, then j\l(a)= b,(r). Let ,u,=mi+a,, O,<a, < 1, so that p=m+a, and 
a ED. Because ii is periodic, ii(B) = g,(a), and this value is known. Q.E.D.) 
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Thus sampling does not result in any loss of information, and f,,, and hence fi 
and f can be fully reconstructed from the values of gl on D. If the Q;s are not 
disjunct, this is not possible. See Fig. 1 for an illustration of a set of disjunct Q,‘s. 

The Q,‘s are disjunct, if and only if the P,‘s are disjunct, because U is invertible. 
But P, = U(l+ Q) = Ul+ P is a sphere of radius R with center Ul= U(x;=, lie,) = 
C,“=, l,u,. Thus the centers of the spheres P, form a lattice defined by the vectors u,. 
These spheres are shown by Fig. 2. 

As a result of the above, it can be said that the function f is adequately sampled if 
the spheres P, are packed in a lattice, without overlapping. On the other hand, the 
function f is efJicciently sampled if the spheres are packed as dense as possible. This 

FIG. 1. The P-spectrum of a function f sampled on a two-dimenstonal skewed grid. The Fourier 
transform of / is contained m a sphere Pa, so that the Fourier transform of the function in the oblique 
coordinates, f,(p), is contained in the egg-shaped region Q,. Sampling the function f on a discrete grid 
produces copies of f,(p), each contained in an egg-shaped region Q,. Since the regions Q,=l+ Q, are 
disjunct, these copies do not overlap each other, so that no aliasing occurs. (Ahsing is the phenomenon 
of one frequency impersonating anotp; this effect is caused by undersampling). The lattice vectors that 
define the sampling grid are v, = (*j; 3 ), and v2 = (“y’j). The band-limit radius is R = 0.5. 
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FIG. 2. The k-spectrum of a function f sampled on a two-dimensional skewed grid. The Fourier 
transform off is contained in the sphere Pa. Sampling the function f on a discrete grid produces copies 
of .f(k), each contained in a sphere with radius R and center 111. Since the regions P,= Ul+ PO are 
disjunct, these copres do not overlap each other, so that no aliasing occurs. The lattice vectors that 
detine the sampling grid are the same as m Fig. 1. The reciprocal lattice vectors that define the lattice in 
k-space are u, = (\::I), and a2 = (y). The band-limn radius is R = 0.5. The spheres till 90.7 % of all space. 
(Sampling by a rectangular grid only tills 78.5% of all space.) 

can be seen by the following argument: Let ye be the part of k-space that is occupied 
by spheres P,, 

Vol(spheres) Vol( one sphere) 
’ = Vol( space ) = Vol(one unit cell)’ (3.6) 

since the number of unit cells equals the number of spheres. The volume of the unit 
cell is ldet U ( = d. If for a given radius R the unit cell is made as small as possible, 
then ldet VI = l/d, the volume of a unit cell in x-space, is made as large as possible. 
Since the number of unit cells in x-space equals the number of sampling points, this 
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TABLE I 

Isotropic Sampling Efficiency” 

Dimenslon 

1 
2 
3 
4 
5 
6 
7 
8 

Maximum sampling Efficiency of Improvement 
elliciency qmar cubic lattice qcub factor 

(%) (%I %narl~cub 

100.0 100.0 1.0 
90.7 78.5 1.15 
74.0 52.4 1.4 
61.7 30.8 2.0 
46.5 16.45 2.8 
37.3 8.07 4.6 
29.5 3.69 8.0 

8.07 0.505 16.0 

” Source: Petersen and Middleton [6]. 

minimizes the number of sampling points needed to sample a certain volume of 
space adequately with isotropic band-limit R. Thus r] may be termed the isotropic 
sampling efficiency. 

The problem of finding the densest possible lattice packing of spheres has been 
solved [2], for dimensions at least up to n = 8. Table I, which is adapted from 
Table C.11 of Ref. [6], shows the maximum obtainable efficiency qmax, the efficiency 
qcub obtained by using a cubic lattice, and the improvement achievable by skewed 
sampling. It can easily be shown that q,,,, equals the volume of a sphere of radius 
R = 4 in n-dimensional space, and that the improvement factor q,ax/qcub equals 
(det V(, where Vis the matrix that defines the sampling grid in the x-domain. 

From the table, it is evident that in multi-dimensions sampling by a cubic lattice 
is much less efficient than sampling by an appropriately skewed lattice. This implies 
that the standard Fourier method is also much less efficient than the skewed 
Fourier method. 

Optimal sampling grids for n d 8 are presented in Table II, which is adapted from 
Table C.1 of Ref. [6]. The table gives for each dimension the matrix V which defines 
an optimal sampling lattice in x-space. The spheres packed in k-space are of radius 
R = 5. For other radii R all the elements of the matrix V should be divided by 2R. 
The optimal lattice is not unique, since rotation of the given lattice produces other 
optimal lattices. The lattice given in the table should thus be resealed, rotated, and 
translated to lit the particular problem to be solved. 

IV. THE SKEWED FOURIER ALGORITHM 

The results obtained in the previous section for sampling off are equally valid 
for sampling of Vtf, since f and V'f have the same band-limit radius R (cf. 
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TABLE II 

Optimal Sampling Lattices, for Dimension Up to n = 8 

1 0 0 0 
1 2 1 1 

[ 1 
0010’ 

0001 

n=l,2,3,4,5: I’=(l), 
12 2 1 

000 1 

.oo 0 0 

100000 

n=6,7: V= 

0 0 

0 0 

0 0 

0 0 

Of 

J$ 

1 0 

0 1 

0 0 

0 

n=8: v= 
0 

J35 

5 

0 

-0 

Ji 
0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

Note. This table presents the matrices V, whose column vectors v, deline the samphng lattice. The matrlces 
V are normalized, so that the band-limit radius is R=$ The matrices C/, whose column vectors define a 
dense lattice packmg of spheres can be obtained by Cl= ( Vm’)T. Adapted and corrected from: Petersen and 
Middleton [6]. 
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Eq. (2.27)). In particular, the Fourier transform of the Laplacian, L(p) fi(p), is 
replicated at all the lattice points, as a result of the sampling procedure. 

Let G be the function which replicates L 1 o (the restriction of L to Q), i.e., 

if PEQ, 

if P $ Q,, all A 

(4.1) 

in analogy with Eq. (3.5). It is easy to see that the function G(p) g,(p) is the 
Fourier transform of the sampled Laplacian, and that it is a periodic function. All 
information on G is thus contained in the set of values of G on the unit cell D. As a 
result, computing the sampled Laplacian amounts to performing a Fourier trans- 
form, multiplying by G, and performing an inverse Fourier transform. 

The procedure outlined above can be implemented by the following algorithm: 

ALGORITHM FOR COMPUTATION OF THE LAPLACIAN. 

(Sl ) Discretize the function f on a finite grid, by representing its values at grid 
points x = (1/2R) x:/“= 1 m,v,, where m = (m,, . . . . m,) is a multi-index number, 
and 0 d m, < N, - 1. R is the desired band-limit radius. The v, are the column 
vectors of the transformation matrix obtained from Table II. 

(S2) Compute the n-dimensional discrete Fourier transform by the fast Fourier 
transform algorithm, with M, points in direction j. 

(S3) Compute the value G(p) for each grid point indexed m, as follows: Let p= 
(m,/N,, . . . . m,/N,) and k = Up. Find the sphere P, of radius R to which k 
belongs, by computing the distance Ilk - Ulll of k to all corners iJ1 of the unit 
cell, where I = (I,, . . . . I,) with f, E (0, 1 }. If k E P,, then compute G(p) = 
-47~~ x;=, I.:=, c,& - I,)& - lk). If no such P, exists, then set G(p) =O. 

(S4) Multiply the function value at the grid point m by G(p). 
(S5) Perform an inverse fast Fourier transform. 
(S6) Retrieve the values of V2f from the grid in the same discretization as in step 

(Sl). 

Some remarks on the algorithm: 

(i) Step (S3), the preparation of the quadratic form, has to be performed only 
once, for computation of many Laplacians on the same grid. The values G(p) can 
be stored on a separate grid, and used in subsequent computations of Laplacians. 

(ii) For functions f that are band-limited only in approximation, step (S3) 
implies a cutoff of the spectrum at radius R. An alternative to this is the assignment 
of a value G(p) in any case, according to the nearest corner. In Section V it is 
shown that this improves accuracy in the test case of a Gaussian wave function. 

The skewed Fourier method solves the time dependent Schriidinger equation by 



256 BISSELING AND KOSLOFF 

the same algorithm as the Fourier method (see [8-9]), except for the computation 
of the Laplacian, which is done by the algorithm presented above. 

V. NUMERICAL TEST: FIVE-DIMENSIONAL GAUSSIAN WAVE FUNCTIONS 

Two Gaussian wave functions were used to compare the accuracy of the 
Laplacian operator on orthogonal and skewed grids. Gaussian functions were 
chosen because such functions approximate extremely well a band-limited function 
with a finite support. Moreover, they resemble closely semi-local wave functions 
which are commonly used in molecular dynamics. 

Figure 3 shows the position of the Gaussians in momentum space relative to the 
outer boundaries of the band-limiting radius, for both grid geometries. This is 
visualized by a two-dimensional cut through the five-dimensional momentum space, 
where the Gaussians are characterized by their average momentum pO and their 
width dp. The momentum of one Gaussian was directed along an axis of the 
orthogonal grid; the other Gaussian was directed diagonally. The infinite spread in 
momentum of the Gaussians means that part of the function always penetrates into 

FIG. 3. The momentum and momentum spread of two five-dimenstonal Gaussran wave functions, 
relattve to the band-limits of the orthogonal and skewed grid. Shown IS the intersection through the 
k,, k, plane. The length of the mean momentum vector Ilka 1) = 0.5 The radius of the circles IS one stan- 
dard deviation, whrch means that in five dimensions 13% of the Gaussran function is inside the ball of 
thts radius. Rorth IS the band-limiting radius of the orthogonal grid; Rrkea IS the band-limiting radius of 
the skewed grid. The intersection of one of the forbidden balls wtth the k,, k, plane is also displayed. 
The forbidden region represents allasing. 
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TABLE III 

Accuracy of the Skewed Fourier Laplaclan 

Number Volume 
of pomts of Band-hmn Wave Accuracy Accuracy 
III each samplmg radius R number (wnh band-limit cutoff) (wnhout cut&) 

drrectmn unn cell vector 
NE ldet vl Skewed Orthogonal K Skewed Orthogonal Skewed Orthogonal 

I5 02441 0816 0.663 (0 5.0,o.o. 0) 013 041 0.012 0093 

(I, 1, 1, 1. 1 J/2 ,;X 014 049 00095 0.0054 

18 0.098 I 0.979 0795 (0 5,0,0.0,0) 0014 0.16 0.00054 0.014 

(1. I, 1. 1. 1)/Z ,I? 0.017 0.18 00017 0.00018 

Nore The computation IS tested for a tive-dimensional Gaussian wave function f(x)= 
eZnrk” xc-x x 2 The Gaussian has momentum p,, = 2rrk0. The skewed sampling is the optimal sampling, 
as given by Table II. Results are compared with results of the Fourier method on an orthogonal grid, for 
the same volume of the sampling umt cell The radius R is the band-limit radius R = Ik,,,l. the 
maximum wave number for which the samphng is adequate. 

the forbidden regions, see Fig. 3. The axially directed function is the worst case for 
the orthogonal grid. This can be seen by the large relative error given in Table III 
for this case. For the skewed grid the forbidden regions are further out, and 
therefore the tails of the momentum penetrate much less into the regions; this 
explains the smaller maximum error obtained for the skewed grid, as compared to 
the error on the orthogonal grid (for the same density of grid points), see Table III. 
It should be noticed in both cases that the procedure without a band-limit cutoff 
(the alternative procedure for step (S3)) always gave superior results. 

A priori the direction of the wave function is not known, therefore the error 
analysis should consider the worst case. Table III shows that the accuracy of the 
worst case of the skewed grid with 155 points is better than the accuracy of the 
worst case of the orthogonal grid with 1g5 points. The numerical effort is 
approximately proportional to the total number of grid points; the ratio between 
the two cases is 2.49, which confirms the theoretical prediction that the skewed grid 
is 2.8 times more efficient in sampling (see Table I). 

VI. EXAMPLE: Two INTERACTING TRIPLET HYDROGEN ATOMS IN A Box 

Hydrogen atoms can be prevented from recombining by placing them in a 
magnetic field [lo]. As an illustration of the skewed Fourier method the ground 
and first excited states of two interacting triplet hydrogen atoms are calculated as a 
function of the volume of the box that contains them. Out of this calculation the 
deviation of hydrogen atomic gas from ideal gas behavior for low temperatures is 
obtained directly. 
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The Hamiltonian of the system is given by 

A= -~+“(r,)-~+V(r,)+V,,(r,,), (6.1) 

where rr is the position vector of atom i= 1, 2, and r,2 is the relative distance 
between them. The interaction potential is adopted from the work of Tang and 
Toennies [ 111. V(r,) is the potential due to the magnetic field. The eigenstates and 
eigenvalues of this system are calculated by a relaxation scheme in which an initial 
guess of the eigenfunction is propagated in imaginary time. The ground state is the 
only state that eventually survives. The propagation is done by a Chebychev expan- 
sion of the evolution operator U(z) = exp( -fir). The first excited state is calculated 

TABLE IV 

Parameters of Potential, Grid, and Propagation Method, Used in the Calculation 
of the Eigenfunctions of Two Interacting Triplet Hydrogen Atoms 

Potentral Parameters 

Interactmn potential K. T Tang and J. P. Toenmes Ref. [I I] 
Repulwe part A exp( -br,,) 

A = 9.30 

b = 1.664 

Box potential 

Attractive part 

Mournurn energy 

Equihbnum distance 

Grid Parameters 
N=N,=N2=N,=N,=N,=N, 

Number of gnd pomts N 4 
Total number of pomts 4096 
MinImum grid spacmg Ax,,, 1.5 
Maxunum density 9.259 x IO*’ moleculesjcm’ 
Maximum gnd spacmg Ax,,, 3 
Mmrmum density 1.157 x 10” molecules/cm’ 

Chebycheu Time Propagatron 

Propagation tune t=6oooa 
Number of Hannltoman 
Calculations M=200 
Mass m = 1823 

C, = 6.499 
C,= 1244 

C,, = 3.286 x 10’ 
c,,= 1215x IO5 

C,,=6061 x 106 

C,, = 3.938 x IO’ 
E= -205x LO-’ 

R,=780 
V(r,)=O 

6 
46656 

2. 

(forLlx=l ) 

8 
262144 

0.75 

1.5 

Note. All parameters are in atomic units. 
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by projecting the ground state out of the Hilbert space. The details of the method 
can be found elsewhere [12]. The initial wavefunction is chosen as a symmetric 
combination of the wavefunctions of the two hydrogen atoms. Because the 
Hamiltonian does not mix the symmetry the propagated eigenstates conserve the 
correct symmetry. For long propagation times random errors can destroy the sym- 
metry. This difficulty is overcome by a symmetrization procedure which is carried 
out to restore the correct symmetry. The optimal oblique six-dimensional grid was 
chosen for the calculation. Table IV summarizes the potential and grid parameters 
used for the calculation. Figure 4 shows the ground state energy as a function of the 
box volume of the two interacting hydrogen atoms. The convergence is checked by 
increasing the number of grid points from 46 = 4096 to 66 = 46656 to 86 = 262144 
points. For a box of volume V= 83 = 256~ the ground state energy changed from 
1.701 x lo-’ for the coarse grid to 1.383 x lop5 for the intermediate grid and 
1.211 x lo-’ for the tine grid. Figure 5 displays the excited state energy compared 
with the energy of two non-interacting hydrogen atoms in a box. Examining Figs. 4 

400 1 
.O 

000 , I I I 1 
0.00 0125 0250 0375 0500 

FIG. 4. The energy of the ground state as a function of (volume))‘” of the box containing two 
interacting triplet hydrogen atoms. The convergence of the method is displayed. The dashed-dotted line 
(-.-) is the result of the calculation using 46 grid points. The calculated values are marked by (0). The 
dashed line (---) is the result of the 66 grid point calculation. The calculated values are marked by (*). 
The ( + ) sign is the result of the 86 gnd point calculation, which was performed for only one energy 
value. The units are atomic units. 
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0 00 0125 0 250 0375 0500 

FIG. 5. The energy of the lirst excited state of the two mteractmg atoms as compared to the energy 
of the excited state without interaction plotted as a function of (volume)-2”. The dashed-dotted line 
(-,-) is the result of the 46 point calculation; the dashed lme is the result of the 66 point calculation; and 
the solid line is the reference energy of two particles in a box without interaction. 

and 5 one finds, as expected, that for boxes of large volume, using the coarse grid is 
sufficient for convergence. When the hydrogens are condensed together a finer grid 
is required to sample the interaction potential correctly. 

A calculation of one energy value on the coarse grid of 4096 points took 3 min on 
a CC1 Power 32 minicomputer with 16 MB of internal memory. The same energy 
calculation took 120 min for a grid of 46656 points and 1200 min for the tine grid of 
262144 points. 

VII. DISCUSSION 

Use of the skewed Fourier method instead of the standard Fourier method 
becomes already attractive at dimensions n k 3 and imperative at dimensions n 2 5, 
since high-dimensional problems are very demanding in terms of computational 
resources. For example, in Section V the number of points for calculation of the 
tive-dimensional Laplacian was reduced from 18’ = 1889568 points to 155 = 759375 
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points. This may mean the difference between a feasible and an unfeasible 
calculation. In the calculation of Section VI the number of points would have 
increased from 262144 in the skewed Fourier method to approximately 1,200,OOO 
for the Cartesian Fourier method. Such a calculation would be unfeasible on the 
CC1 minicomputer. 

CPU-time scaling laws are important guidelines when considering the feasibility 
of a calculation. The CPU-time needed for wave propagation by the Fourier 
method is the product of the CPU-time needed for a single Hamiltonian operation 
and the number of such operations needed to complete the propagation. 

The cost of a Hamiltonian operation is mainly determined by the CPU-time of 
the forward and backward FFTs, which scales semilinearly with the total number of 
grid points N as O(Nlog N). The number N is proportional to the volume of the 
coordinate momentum phase-space volume = (2p,,, . I)“, where I is the extent of the 
grid, pmax the cutoff in momentum and n the dimensionality of the problem. The 
smallest number of points needed to approximate this phase-space is: N = volume/h. 

The number M of Hamiltonian operations needed is proportional to the volume 
of the time-energy phase-space, M = AE . t, where AE is the range of energy eigen- 
values represented on the grid, and t is the propagation time. This scaling law is 
valid for both the second order finite-differencing [8] and the Chebychev 
propagation scheme [9]. 

The total CPU-time needed according to the considerations above is 
0( E”” log E) = 0( p;1;,2 log p,,,) provided that the kinetic energy dominates the 
calculation. For parallel computing devices these scaling estimates may change. 

A necessary condition for the use of the Fourier pseudospectral method is an 
ordered, evenly sampled grid. The representation of the wave function by an 
ordered grid can never be completely isotropic, therefore some waste is 
unavoidable. Geometrically, this can be understood by the fact that there is always 
empty space between multi-dimensional packed spheres. This empty space increases 
with dimensionality; for example in eight dimensions 92% of the space is wasted, 
see Table 1. On this basis one can speculate that the Fourier pseudospectral method 
will become too wasteful for dimensions larger than 10. This conclusion must be 
restricted, because it is not understood what effect the tilling procedure of the empty 
space has on the accuracy of the method. 

An important issue in the use of the skewed Fourier method should be briefly 
mentioned. All Fourier pseudospectral methods require periodic boundary con- 
ditions. In the skewed Fourier method this fact can be used to repack the grid 
points to construct any kind of parallelepiped, such as a rectangular box. 

Realistic multi-dimensional problems of weakly interacting gasses such as helium 
or triplet hydrogen can be treated using this method on existing computers today. 
The real computational challenge of chemistry, the six-dimensional reactive scatter- 
ing A + BC is beyond the scope of existing computers. However, the development of 
more powerful hardware will bring such problems within reach in the near future. 
Use of the skewed Fourier method might then make problems solvable that the 
standard Fourier method would not be able to handle. 
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